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Abstract. We give a more detailed description of the null trajectories in the Kerr-Newman 
metric. Interesting results which were not expected from what was known in the uncharged 
case are (a) a considerable enhancement of the energy storage in a restricted region around 
the source in the naked singularity case and (b) the singularity is completely disconnected 
from the asymptotic region in the sense that no photon can reach it even in the equatorial 
plane. 

1. Introduction 

The motion of test particles in the Kerr gravitational field has been extensively 
investigated in the last few years, and the results are of crucial importance in under- 
standing what happens around black holes (Sharp 1979). 

The Kerr-Newman metric, which describes the gravitational and electromagnetic 
field of a charged and rotating collapsed object, did not stimulate the same interest 
because it is quite probable that black holes have no substantial charge, although this is 
far from certain (Ruffini and Treves 1973, Harrison 1976). 

Because of that we consider further investigation of the properties of this metric 
appropriate; our purpose here is to give a complete description of the photon tra- 
jectories in the equatorial plane of the K-N metric and to study the existence and 
stability of the spherical null orbits. 

2. The equations of motion 

The first-order equations of motion for a charged particle in the Kerr-Newman metric 
were derived by Carter (1968); the equations describing the radial and angular motion 
are 

X 2 i 2 =  R = [ E ( r 2 + a 2 ) - a l - e Q r ] 2 - A ( m 2 r 2 + K )  (1) 

~ ‘ 8 ~  = o = K - m2a2 cos’ e - (l/sin2 e)[Ea sin’ e - z]’ (2) 

where 

X = r 2 + a 2 c o s 2 e  

T = Q2-2Mr 

A = r2 - 2Mr + a + Q = ( r2  + a ’) + T 
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and we define 

A =(r2+a2)2-a2A.  

The quantities M, Q and a describe respectively the mass, charge and specific angular 
momentum of the source; m and e are the mass and charge of the test particle. The 
quantities E, 1 and K are constants of the motion; E describes the particle total energy 
at infinity, 1 is the axial component of the particle angular momentum and K is related 
to the square of its total angular momentum (de Felice 1980). The latter is always 
non-negative and is connected to the Carter constant 22 by 

K = 22 + ( I  - aE)’ 

(Misner et a1 1973 p 899). 
The equations of motion for the photons are obtained from (1) and ( 2 )  by putting 

m = e = O .  (3) 
The K-N geometry describes a black hole only if M 2  2 a’+ Q2; in this case the 

horizons are at 

ri. = M i  ( M 2 - a 2 -  Q2)l” 

where A = 0. When M 2  < a 2  + Q2 the metric describes instead a naked singularity (at 
r = 0, e = ~ / 2 )  and A is always positive. 

3. Equatorial null trajectories 

The equatorial trajectories of photons are conveniently investigated searching for the 
locus of the turning points, which are solutions of the equation R = 0. From equations 
(1) and (3) m d  the condition for equatorial motion K = (1 - aE)’ or 9 = 0 we have 

(A-a2)12-2Tal-A = O .  (4) 

The constants of motion are designed in units of the photon energy: 1+1/E and 
K + K / E 2 .  We solve equation (4) with respect to 1 and study the function 1 = 
1 (r,  a, Q, M )  ; we have 

( 5 )  

Equation ( 5 )  represents a three-parameter (a, Q, M )  family of curves in the I-r plane. 
To know how the curves 1, change varying the parameters, let us first study the function 

(6 )  

2 1/2 I ,  = ( a T * r  A )/(A-a*). 

Q2 = r ( 2 M -  r )  = Q? 

which is the solution of (A - a 2 )  = 0. For a chosen value of Q it gives the divergences of 
1, and, at the same time, the intersections of the ergosphere with the equatorial plane. 
Note that the ergosphere, which is defined by ( r2  + Q2 + a 2  cos2 8 - 2Mr) = 0 ,  exists 
only when Q2 <M2. 

The function 

Q2 = r(2M - r )  - a G Qi = Q: - a (7) 

is the solution of A = 0; when M 2  G ( a 2  + Q2) it defines the horizons and also the locus 
where I ,  = I - .  
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The function 

Q2 = 2Mr = Q: (8) 

is the solution of T = 0, i.e. r = Q2/2M. This surface is interesting because there the 
K-N metric acquires a flat space-time form without being flat; it is relevant in the 
studies of the repulsive phenomena which a particle experiences in the vicinity of a 
naked singularity (Cohen and Gautreau 1979, de Felice et a1 1980). 

The function 

Q 2 = r [ r ( r 2 + u 2 ) + 2 M u 2 ] / u 2 = Q :  (9) 

is the solution of A = 0, that is where one of I ,  goes to zero. Moreover it is the place 
where g++ = 0 in the equatorial plane; recall that g+4 < 0 is a necessary condition for 
causality violation. 

Figure 1 shows the functions Q: - Q:, assuming that M 2  > a’; similar graphs can be 
easily drawn for M 2 <  a 2 ,  For a chosen value of the parameters of the source it is now 
straightforward to draw the functions I,(r) ,  that is the locus of the inversion points. This 
is done in figure 2 ,  taking into account also the properties 

lim I, = fo;) I+(r = 0)  = a. 
,+W 

0 

I 

Figure 1. The curves Q:, Q”, Q: and are shown, not to scale, assuming M > a. 

Figures 2 ( a )  and 2 ( b )  refer to naked singularities ( M 2  < a 2  + Q2), while figure 2 ( c )  
refers to black holes. In particular figure 2 ( a )  holds when there is no ergosphere 
(a2 > M’); figure 2 ( b )  holds when there is an ergosphere but no horizons ( M 2  > Q2 > 
( M 2  -a2)) ,  and figure 2 ( c )  when there are both an ergosphere and horizons. 

These graphs may be compared and contrasted with similar ones for the Kerr metric 
(de Felice 1968, Helliwell and Mallinckrodt 1975, Calvani and de Felice 1978) and the 
Tomimatsu-Sat0 metrics (Tomimatsu and Sat0 1973, Calvani and Catenacci 1976). 

The main features of the motion of the photons (in the equatorial plane) which are 
due to the charge Q are the following. 
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a 

Figure 2. The functions I ,  are shown, not to 
scale, in the three ranges of interest of the 
source parameters (see figure 1): ( a )  Q2> 

M’; ( b )  M’ > Q’ > ( M z  - a’) ;  the vertical 
broken curves denote the ergosphere; (c)  
(U’+ Q’) C M ’ ;  the vertical continuous lines 
denote the horizons. 

(i) The existence of bound orbits for naked singularities when M 2 > Q 2 >  
( M 2 -  U * ) ,  see figure 2 ( b ) ;  a similar situation arises in the T-S metrics when a > M  and 
is connected with the surfaces of infinite redshift. 

(ii) While in the Kerr metric the singularity can be reached by photons coming in 
from infinity only when 12 a, in the K-N metric no photon succeeds in reaching r = 0, 
except for those with 1 = a. 

(iii) Photons with 1 = a deserve a particular attention, and they will be considered in 
more detail in the following section. 

4. Spherical null orbits 

The existence of time-like spherical orbits (that is orbits of constant radius) in the field 
of a black hole was shown by Wilkins (1972).  These orbits cross the equatorial plane 
repeatedly and in the limit of large radius go asymptotically to Keplerian circles, while 
near the horizon they have a helix-like shape. 
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Similar orbits, but of the null type, exist in the field of the Kerr naked singularity 
(Calvani and de Felice 1978): the singularity is surrounded by shells of photons which, 
remarkably, gather around the surface r = M ;  this surface is the position of the horizon 
in the extreme black hole case a = M. 

Let us now extend the same analysis to the K-N metric. The radial coordinate of a 
null orbit will be constant at some value r = ro if the following conditions are simul- 
taneously satisfied: 

or, from equations ( 1 )  and (3 ) :  

( r2+a2-al ) '  -AK = 0 

- 2 alr + 2 r ( r  + a 2 ,  - ( r - M )  K = 0. 

(1 1) 

(12)  

The solutions of ( 1 1 )  and (12) are 

K = O = K +  I = ( r 2  + a2) /a  1,. (14)  

Let us study first K-; the extrema of the curve K-(r ,  a, M, Q) in the K-r plane are 
along 

Q 2 =  ( r / M ) ( r 2 - 3 M r + 3 M 2 ) - a 2 =  Q g ,  ( 1 5 )  

a'= ( r / ~ ) ( r ' - 3 ~ r + 3 ~ ' ) = a a :  (16) 

and Q: is zero along 

which is shown in figure (3 ) .  Figures (4a )  and ( b )  show Q:, Q; and Q:, respectively for 
a < M  and a >M. Note that at r = M ,  a:= Q:=(M2-a2), 

With the aid of figures 3 and 4 it is now easy to draw the curve K- (figure 5 ) ;  one can 
prove that the full part of the curve K- denotes stable orbits (a2R/ar2 < 0), while the 
dashed part denotes unstable orbits (a2R/ar2 > 0). It is remarkable that, as for the Kerr 
naked singularity (Calvani and de Felice 1978), the surface r = M  is surrounded by 
stable orbits. 

Figure 3. The function a:  is shown; for a chosen value of a it gives the zeros of Q:. 
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I 

I ,,: 

I 

Figure 5. The locus of spherical photon tra- 
jectories (i.e. the function K-) is shown in the K - r I ,,I/ 

-.'I 

I plane, not to scale, for ( a )  Q 2 > M 2 ;  ( b )  M 2 >  
Q2 > ( M 2  - a').; ( c ) (a2  + Q2) < M Z .  The extrema I 

I 

\ 

Y 
Figure 4. The curves Q:, Q: and Q: are shown for ( a )  M > a ; ( b )  M < a. The zeros of Q: 
are deduced from figure 3;  Q i  gives the extrema of K-. 

The case K ,  = 0 deserves a particular attention. From equation (2) it follows that 
real photon trajectories with K = 0 can only have 6 = 0, and therefore must move on 
hyperboloids 0 = constant with sin' 0 = l / a ,  which implies 1 s a (vortical motion) (de 
Felice and Calvani 1972, Bicak and Stuchlik 1976). From equation (1) it follows that 
R = 0 only for r = 0, B = 77/2 and I = a, that is on the ring singularity itself where the 
equations of motion lose their meaning. We believe that these photons can only exist 
confined in the singularity itself (Calvani et a1 1978); in fact these photons play a key 
role in some models of the Kerr metric source (Hamity 1976, Israel 1977, Bernstein 
1978). 
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5. Conclusions 

The most interesting effect which is due to the charge in the K-N metric is undoubtedly 
that of confining some photons in a bounded region around the source even in the 
equatorial plane. This is a phenomenon of energy storage which was known to exist in 
the Kerr metric (Calvani and de Felice 1978) as well as in some internal solutions (de 
Felice 1969, Kuchowicz 1974, Guha Thakurta 1978). 

A further consequence of the charge is the impossibility for the K-N singularity to 
be reached by photons coming in from infinity in the equatorial plane. This means that, 
even in the naked singularity conditions, the singularity ( r  = 0, 8 = ~ / 2 )  is completely 
disconnected from the asymptotic regions, contrary to what happens in the Kerr metric; 
in the latter case the singularity could in fact be reached from infinity by a photon 
moving only in the equatorial plane. This property suggests that the results that a naked 
singularity of the Kerr type would be indistinguishable from a black hole to far distant 
observations (Calvani et a1 1978) is even more true in the Kerr-Newman case. 
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